RNA-Seq Based De Novo Transcriptome Assembly and Gene Discovery of Cistanche deserticola Fleshy Stem
نویسندگان
چکیده
BACKGROUNDS Cistanche deserticola is a completely non-photosynthetic parasitic plant with great medicinal value and mainly distributed in desert of Northwest China. Its dried fleshy stem is a crucial tonic in traditional Chinese medicine with roles of mainly improving male sexual function and strengthening immunity, but few mechanistic studies have been conducted partly due to the lack of genomic and transcriptomic resources. RESULTS In this study, we performed deep transcriptome sequencing in fleshy stem of C. deserticola, and about 80 million reads were generated using Illumina pair-end sequencing on HiSeq2000 platform. Using trinity assembler, we obtained 95,787 transcript sequences with transcript lengths ranging from 200 bp to 15,698 bp, having an average length of 950 bases and the N50 length of 1,519 bases. 63,957 transcripts were identified actively expressed with FPKM ≥ 0.5, in which 30,098 transcripts were annotated with gene descriptions or gene ontology terms by sequence similarity analyses against several public databases (Uniprot, NR and Nt at NCBI, and KEGG). Furthermore, we identified key enzyme genes involved in biosynthesis of lignin and phenylethanoid glycosides (PhGs) which are known to be the primary active ingredients. Four phenylalanine ammonia-lyase (PAL) genes, the first key enzyme in lignin and PhG biosynthesis, were identified based on sequences comparison and phylogenetic analysis. Two biosynthesis pathways of PhGs were also proposed for the first time. CONCLUSIONS In all, we completed a global analysis of the C. deserticola fleshy stem transcriptome using RNA-seq technology. A collection of enzyme genes related to biosynthesis of lignin and phenylethanoid glysides were identified from the assembled and annotated transcripts, and the gene family of PAL was also predicted. The sequence data from this study will provide a valuable resource for conducting future phenylethanoid glysides biosynthesis researches and functional genomic studies in this important medicinal plant.
منابع مشابه
Clustering of Short Read Sequences for de novo Transcriptome Assembly
Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...
متن کاملA Comparison of Next Generation Sequencing Technologies for Transcriptome Assembly and Utility for RNA-Seq in a Non-Model Bird
De novo assembled transcriptomes, in combination with RNA-Seq, are powerful tools to explore gene sequence and expression level in organisms without reference genomes. Investigators must first choose which high throughput sequencing platforms will provide data most suitable for their experimental goals. In this study, we explore the utility of 454 and Illumina sequences for de novo transcriptom...
متن کاملmTim: Rapid and accurate transcript reconstruction from RNA-Seq data
Motivation: Recent advances in high-throughput cDNA sequencing (RNA-Seq) technology have revolutionized transcriptome studies. A major motivation for RNA-Seq is to map the structure of expressed transcripts at nucleotide resolution. With accurate computational tools for transcript reconstruction, this technology may also become useful for genome (re-)annotation, which has mostly relied on de no...
متن کاملCorrection: RNAbrowse: RNA-Seq De Novo Assembly Results Browser
Transcriptome analysis based on a de novo assembly of next generation RNA sequences is now performed routinely in many laboratories. The generated results, including contig sequences, quantification figures, functional annotations and variation discovery outputs are usually bulky and quite diverse. This article presents a user oriented storage and visualisation environment permitting to explore...
متن کاملSPATA: A Seeding and Patching Algorithm for Hybrid Transcriptome Assembly
Transcriptome assembly from RNA-Seq reads is an active area of bioinformatics research. The ever-declining cost and the increasing depth of RNA-Seq have provided unprecedented opportunities to better identify expressed transcripts. However, the nonlinear transcript structures and the ultra-high throughput of RNA-Seq reads pose significant algorithmic and computational challenges to the existing...
متن کامل